Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.28.21256237

ABSTRACT

Despite the advent of safe and highly effective COVID-19 vaccines, pervasive inequities in global distribution persist. In response, multinational partners have proposed programs to allocate vaccines to low- and middle-income countries (LMICs). Yet, there remains a substantial funding gap for such programs. Further, the optimal vaccine supply is unknown and the cost-effectiveness of investments into global vaccination programs has not been described. We used a validated COVID-19 simulation model8 to project the health benefits and costs of reaching 20%-70% vaccine coverage in 91 LMICs. We show that funding 20% vaccine coverage over one year among 91 LMICs would prevent 294 million infections and 2 million deaths, with 26 million years of life saved at a cost of US$6.4 billion, for an incremental cost effectiveness ratio (ICER) of US$250/year of life saved (YLS). Increasing vaccine coverage up to 50% would prevent millions more infections and save hundreds of thousands of additional lives, with ICERs below US$8,000/YLS. Results were robust to variations in vaccine efficacy and hesitancy, but were more sensitive to assumptions about epidemic pace and vaccination costs. These results support efforts to fund vaccination programs in LMICs and complement arguments about health equity, economic benefits, and pandemic control11.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.07.20170498

ABSTRACT

ABSTRACT Importance: Approximately 356,000 people stay in homeless shelters nightly in the US. These individuals are at high risk for COVID-19. Objective: To assess clinical outcomes, costs, and cost-effectiveness of strategies for COVID-19 prevention and management among sheltered homeless adults. Design: We developed a dynamic microsimulation model of COVID-19. We modeled sheltered homeless adults in Boston, Massachusetts, using cohort characteristics and costs from Boston Health Care for the Homeless Program. Disease progression, transmission, and clinical outcomes data were from published literature and national databases. We examined surging, growing, and slowing epidemics (effective reproduction numbers [Re] 2.6, 1.3, and 0.9). Costs were from a health care sector perspective; time horizon was 4 months. Setting & Participants: Simulated cohort of 2,258 adults residing in homeless shelters in Boston. Interventions: We assessed combinations of daily symptom screening with same-day polymerase chain reaction (PCR) testing of screen-positive individuals, universal PCR testing every 2 weeks, hospital-based COVID-19 care, alternate care sites [ACSs] for mild/moderate COVID-19 management, and moving people from shelters to temporary housing, compared to no intervention. Main Outcomes: Infections, hospital-days, costs, and cost-effectiveness. Results: Compared to no intervention, daily symptom screening with ACSs for those with pending tests or confirmed COVID-19 and mild/moderate disease leads to 37% fewer infections and 46% lower costs when Re=2.6, 75% fewer infections and 72% lower costs when Re=1.3, and 51% fewer infections and 51% lower costs when Re=0.9. Adding universal PCR testing every 2 weeks further decreases infections in all epidemic scenarios, with incremental cost per case prevented of $1,000 (Re=2.6), $27,000 (Re=1.3), and $71,000 (Re=0.9). In all scenarios, moving shelter residents to temporary housing with universal PCR testing every 2 weeks is most effective but substantially more costly than other options. Results are most sensitive to the cost and sensitivity of PCR testing and the efficacy of ACSs in preventing transmission. Conclusions & Relevance: Daily symptom screening and ACSs for sheltered homeless adults will substantially decrease COVID-19 cases and reduce costs compared to no intervention. In a surging epidemic, adding universal PCR testing every 2 weeks further decreases cases at modest incremental cost and should be considered. Keywords: Homelessness, COVID-19, cost-effectiveness analysis, simulation model


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.23.20160820

ABSTRACT

BackgroundWe projected the clinical and economic impact of alternative testing strategies on COVID-19 incidence and mortality in Massachusetts using a microsimulation model. MethodsWe compared five testing strategies: 1) PCR-severe-only: PCR testing only patients with severe/critical symptoms; 2) Self-screen: PCR-severe-only plus self-assessment of COVID-19-consistent symptoms with self-isolation if positive; 3) PCR-any-symptom: PCR for any COVID-19-consistent symptoms with self-isolation if positive; 4) PCR-all: PCR-any-symptom and one-time PCR for the entire population; and, 5) PCR-all-repeat: PCR-all with monthly re-testing. We examined effective reproduction numbers (Re, 0.9-2.0) at which policy conclusions would change. We used published data on disease progression and mortality, transmission, PCR sensitivity/specificity (70/100%) and costs. Model-projected outcomes included infections, deaths, tests performed, hospital-days, and costs over 180-days, as well as incremental cost-effectiveness ratios (ICERs, $/quality-adjusted life-year [QALY]). ResultsIn all scenarios, PCR-all-repeat would lead to the best clinical outcomes and PCR-severe-only would lead to the worst; at Re 0.9, PCR-all-repeat vs. PCR-severe-only resulted in a 63% reduction in infections and a 44% reduction in deaths, but required >65-fold more tests/day with 4-fold higher costs. PCR-all-repeat had an ICER


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.29.20140111

ABSTRACT

Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres; Contact Tracing (CT) in households of cases; Isolation Centres (IC), for cases not requiring hospitalisation; community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS); and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (Re) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER)


Subject(s)
COVID-19 , Multiple Sclerosis
SELECTION OF CITATIONS
SEARCH DETAIL